Correlations of almost primes

نویسندگان

چکیده

Abstract We prove that analogues of the Hardy–Littlewood generalised twin prime conjecture for almost primes hold on average. Our main theorem establishes an asymptotic formula number integers $n=p_1p_2 \leq X$ such $n+h$ is a product exactly two which holds all $|h|\leq H$ with $\log^{19+\varepsilon}X\leq H\leq X^{1-\varepsilon}$ , under restriction size one factors n and . Additionally, we consider correlations $n,n+h$ where has factors, establishing $|h| $X^{1/6+\varepsilon}\leq

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlations of Zeros and the Distribution of Almost Primes

We establish relationships between mean values of products of logarithmic derivatives of the Riemann zeta-function near the critical line, correlations of the zeros of the Riemann zeta-function and the distribution of integers representable as a product of a fixed number of prime powers.

متن کامل

Small Gaps between Primes or Almost Primes

Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that lim inf n→∞ (pn+1 − pn) log pn = 0. We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of ...

متن کامل

Surfaces via Almost - Primes

Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...

متن کامل

Power Totients with Almost Primes

A natural number n is called a k-almost prime if n has precisely k prime factors, counted with multiplicity. For any fixed k > 2, let Fk.X/ be the number of k-th powers m 6 X such that !.n/ D m for some squarefree k-almost prime n, where !. ! / is the Euler function. We show that the lower bound Fk.X/ " X=.log X/ holds, where the implied constant is absolute and the lower bound is uniform over ...

متن کامل

Almost quantum correlations.

Quantum theory is not only successfully tested in laboratories every day but also constitutes a robust theoretical framework: small variations usually lead to implausible consequences, such as faster-than-light communication. It has even been argued that quantum theory may be special among possible theories. Here we report that, at the level of correlations among different systems, quantum theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical proceedings of the Cambridge Philosophical Society

سال: 2022

ISSN: ['0305-0041', '1469-8064']

DOI: https://doi.org/10.1017/s0305004122000251